Spectral analysis of whisking output via optogenetic modulation of vibrissa cortex in rat
نویسندگان
چکیده
Whisking motor output in awake and freely moving rat is investigated with optogenetic excitation/inhibition of the vibrissae motor cortex (vMCx) layer V. The goal of the study is to establish the direct causal relationship between the cortical activity and the whisking output using optical stimulation, excitatory or inhibitory, with different frequencies. Progression and reduction of the whisking frequency was obtained; however, the whisking frequency did not necessarily followed the entrainment stimulus. Based on our observations, the excitation of the vMCx doubled and inhibition reduced the whisking frequency to half, compared to control, at all stimulus frequencies. This result is an empirical evidence that the cortex exerted control through a central pattern generator structure since complete inhibition was not obtained and the frequency of the response was different from that of the stimulus. We suggest that the use of the optogenetic approach, which enabled us to perform the bidirectional modulation and direct readout from vMCx, has brought valid evidence for the causal connection between cortical activity and whisking motor output.
منابع مشابه
What makes whiskers shake? Focus on "Current flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat".
As one researcher once put it—“to beat the night with sticks” (D. Kleinfeld, personal communication)—might be only option for a small mammal to find its way through the dark holes it is living in. Rats employ such a strategy and explore their environment by fast rhythmic whisker movements. Whisking is generated by a highly specialized (Dörfl 1982) fast-muscle-fiber-dominated (Jin et al. 2004) m...
متن کاملFeedforward motor information enhances somatosensory responses and sharpens angular tuning of rat S1 barrel cortex neurons
The primary vibrissae motor cortex (vM1) is responsible for generating whisking movements. In parallel, vM1 also sends information directly to the sensory barrel cortex (vS1). In this study, we investigated the effects of vM1 activation on processing of vibrissae sensory information in vS1 of the rat. To dissociate the vibrissae sensory-motor loop, we optogenetically activated vM1 and independe...
متن کاملGoal-directed whisking increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat.
We tested the hypothesis that behavioral context modulates phase-locking between rhythmic motor activity and concomitant electrical activity induced in primary sensory (S1) cortex. We used exploratory whisking by rat as a model system and recorded two measures: (i) the mystacial electromyogram ( nabla EMG) as a surrogate of vibrissa position, and (ii) the field potential ( nabla LFP) in S1 cort...
متن کاملElectronic Theses and Dissertations Uc San Diego Title: Biomechanics and Cortical Representation of Whisking in the Rat Vibrissa System Biomechanics and Cortical Representation of Whisking in the Rat Vibrissa System
.................................................................................................................... xiii Chapter 1 – Introduction .............................................................................................. 1 Chapter 2 – Motor control in the rat vibrissa system .................................................. 5 2.1 The motor plant for whisking .................
متن کاملCurrent flow in vibrissa motor cortex can phase-lock with exploratory rhythmic whisking in rat.
Rats explore their environment with rhythmic sweeps of their mystacial vibrissae in the range of 5-15 Hz. We tested if vibrissa primary motor (M1) cortex produces electrical activity that locks to this behavioral output. Rats were trained to whisk in air in search of a food reward. The EMG of the mystacial pad served as a surrogate of vibrissa position, while chronically implanted, 16-channel S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013